Osmosis is the movement of a solvent across a semipermeable membrane toward a higher concentration of solute. In biological systems, the solvent is typically water, but osmosis can occur in other liquids, supercritical liquids, and even gases.[9][10]
When a cell is submerged in water, the water molecules pass through the cell membrane from an area of low solute concentration to high solute concentration. For example, if the cell is submerged in saltwater, water molecules move out of the cell. If a cell is submerged in freshwater, water molecules move into the cell.
Water passing through a semi-permeable membrane
When the membrane has a volume of pure water on both sides, water molecules pass in and out in each direction at exactly the same rate. There is no net flow of water through the membrane.
The mechanism responsible for driving osmosis has commonly been represented in biology and chemistry texts as either the dilution of water by solute (resulting in lower concentration of water on the higher solute concentration side of the membrane and therefore a diffusion of water along a concentration gradient) or by a solute's attraction to water (resulting in less free water on the higher solute concentration side of the membrane and therefore net movement of water toward the solute). Both of these notions have been conclusively refuted.
The diffusion model of osmosis is rendered untenable by the fact that osmosis can drive water across a membrane toward a higher concentration of water.[11] The "bound water" model is refuted by the fact that osmosis is independent of the size of the solute molecules--a colligative property[12]--or how hydrophilic they are.
Effect of different solutions on blood cells
Micrographs of osmotic pressure on red blood cells(RBC)
Plant cell under different environments
Osmosis, unlike diffusion, requires a force to work. This force is supplied by the solute's interaction with the membrane. Solute particles move randomly due to Brownian motion. If they move towards pores in the membrane, they are repelled, and in being repelled, acquire momentum directed away from the membrane. The momentum is rapidly transferred to surrounding water molecules, driving them away from the membrane as well.
Osmotic pressure is the main cause of support in many plants. The osmotic entry of water raises the turgor pressure exerted against the cell wall, until it equals the osmotic pressure, creating a steady state.
When a plant cell is placed in a solution that is hypertonic relative to the cytoplasm, water moves out of the cell and the cell shrinks. In doing so, the cell becomes flaccid. In extreme cases, the cell cases, the cell becomes plasmolyzed – the cell membrane disengages with the cell wall due to lack of water pressure on it.
When a plant cell is placed in a solution that is hypotonic relative to the cytoplasm, water move into the cell and the cell swells to become turgid.
Osmosis is responsible for the ability of plant roots to draw water from the soil. Plants concentrate solutes in their root cells by active transport, and water enters the roots by osmosis. Osmosis is also responsible for controlling the movement of guard cells.
Osmosis can be demonstrated when potato slices are added to a high salt solution. The water from inside the potato moves out to the solution, causing the potato to shrink and to lose its 'turgor pressure'. The more concentrated the salt solution, the bigger the difference in size and weight of the potato slice.
In unusual environments, osmosis can be very harmful to organisms. For example, freshwater and saltwater aquarium fish placed in water of a different salinity than that to which they are adapted to will die quickly, and in the case of saltwater fish, dramatically. Another example of a harmful osmotic effect is the use of table salt to kill leeches and slugs.
Suppose an animal or a plant cell is placed in a solution of sugar or salt in water.
1.If the medium is hypotonic relative to the cell cytoplasm — the cell will gain water through osmosis.
2.If the medium is isotonic — there will be no net movement of water across the cell membrane.
3.If the medium is hypertonic relative to the cell cytoplasm — the cell will lose water by osmosis.
Essentially, this means that if a cell is put in a solution which has a solute concentration higher than its own, it will shrivel, and if it is put in a solution with a lower solute concentration than its own, the cell will swell and may even burst.
Chemical gardens demonstrate the effect of osmosis in inorganic chemistry
When a cell is submerged in water, the water molecules pass through the cell membrane from an area of low solute concentration to high solute concentration. For example, if the cell is submerged in saltwater, water molecules move out of the cell. If a cell is submerged in freshwater, water molecules move into the cell.
Water passing through a semi-permeable membrane
When the membrane has a volume of pure water on both sides, water molecules pass in and out in each direction at exactly the same rate. There is no net flow of water through the membrane.
The mechanism responsible for driving osmosis has commonly been represented in biology and chemistry texts as either the dilution of water by solute (resulting in lower concentration of water on the higher solute concentration side of the membrane and therefore a diffusion of water along a concentration gradient) or by a solute's attraction to water (resulting in less free water on the higher solute concentration side of the membrane and therefore net movement of water toward the solute). Both of these notions have been conclusively refuted.
The diffusion model of osmosis is rendered untenable by the fact that osmosis can drive water across a membrane toward a higher concentration of water.[11] The "bound water" model is refuted by the fact that osmosis is independent of the size of the solute molecules--a colligative property[12]--or how hydrophilic they are.
Effect of different solutions on blood cells
Micrographs of osmotic pressure on red blood cells(RBC)
Plant cell under different environments
Osmosis, unlike diffusion, requires a force to work. This force is supplied by the solute's interaction with the membrane. Solute particles move randomly due to Brownian motion. If they move towards pores in the membrane, they are repelled, and in being repelled, acquire momentum directed away from the membrane. The momentum is rapidly transferred to surrounding water molecules, driving them away from the membrane as well.
Osmotic pressure is the main cause of support in many plants. The osmotic entry of water raises the turgor pressure exerted against the cell wall, until it equals the osmotic pressure, creating a steady state.
When a plant cell is placed in a solution that is hypertonic relative to the cytoplasm, water moves out of the cell and the cell shrinks. In doing so, the cell becomes flaccid. In extreme cases, the cell cases, the cell becomes plasmolyzed – the cell membrane disengages with the cell wall due to lack of water pressure on it.
When a plant cell is placed in a solution that is hypotonic relative to the cytoplasm, water move into the cell and the cell swells to become turgid.
Osmosis is responsible for the ability of plant roots to draw water from the soil. Plants concentrate solutes in their root cells by active transport, and water enters the roots by osmosis. Osmosis is also responsible for controlling the movement of guard cells.
Osmosis can be demonstrated when potato slices are added to a high salt solution. The water from inside the potato moves out to the solution, causing the potato to shrink and to lose its 'turgor pressure'. The more concentrated the salt solution, the bigger the difference in size and weight of the potato slice.
In unusual environments, osmosis can be very harmful to organisms. For example, freshwater and saltwater aquarium fish placed in water of a different salinity than that to which they are adapted to will die quickly, and in the case of saltwater fish, dramatically. Another example of a harmful osmotic effect is the use of table salt to kill leeches and slugs.
Suppose an animal or a plant cell is placed in a solution of sugar or salt in water.
1.If the medium is hypotonic relative to the cell cytoplasm — the cell will gain water through osmosis.
2.If the medium is isotonic — there will be no net movement of water across the cell membrane.
3.If the medium is hypertonic relative to the cell cytoplasm — the cell will lose water by osmosis.
Essentially, this means that if a cell is put in a solution which has a solute concentration higher than its own, it will shrivel, and if it is put in a solution with a lower solute concentration than its own, the cell will swell and may even burst.
Chemical gardens demonstrate the effect of osmosis in inorganic chemistry
ليست هناك تعليقات:
إرسال تعليق